

DMP 331 i DMP 333 i LMP 331 i

Precision Pressure Transmitter / Screw-in transmitter

Stainless Steel Sensor

accuracy according to IEC 60770: 0.1 % FSO

The precision pressure transmitter DMP 331i and DMP 333i also the precision screw-in transmitter LMP 331i demonstrate the further development of our industrial pressure transmitters.

The signal processing of sensor signal is done by digital electronics with 16-bit analog digital converter. Consequently it is possible to conduct an active compensation and the transmitters with excellent maesurements and exeptionally attractive price to offer on the market.

Preferred areas of use are DMP 331i / DMP 333i

Laboratory Techniques

energy production (gas consumption and thermal energy measurement)

Preferred areas of use are LMP 331i

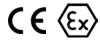
Environmental Engineering (water / sewage / recycling)

Chemical / petrochemical industry

Nominal pressure

from 0 ... 400 mbar up to 0 ... 600 bar

Output signal


2-wire: 4 ... 20 mA 3-wire: 0 ... 10 V others on request

Product characteristics

- thermal error in compensated range -20 ... 80 °C: 0.2 % FSO TC 0.02 % FSO / 10K
- communication interface for adjusting of offset, span and damping

Optional versions

- IS-versions
- Ex ia = intrinsically safe for gases and dusts
- adjustment of nominal pressure gauges (factory-provided)

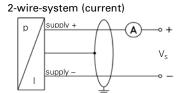
BD SENSORS GmbH BD-Sensors-Straße 1 D - 95199 Thierstein

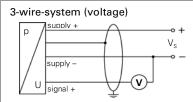
Tel: +49 (0) 92 35 / 98 11- 0 Fax: +49 (0) 92 35 / 98 11- 11

www.bdsensors.com info@bdsensors.de

DMP 331i / DMP 333i / LMP 331i Precision Pressure Transmitter / Screw-in Transmitter

$\begin{split} \begin{array}{ c c c c c } & \text{Nominal pressure} & bar & 0.4 & 1 & 2 & 4 & 10 & 20 & 40 \\ \hline \text{gauge} / absolute & bar & 2 & 5 & 10 & 20 & 40 & 80 & 105 \\ \hline \text{Burst pressure} & bar & 3 & 7,5 & 15 & 25 & 50 & 120 & 210 \\ \hline \text{On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.} \\ \hline \hline \text{Vacuum ranges} & bar & -0.4 \dots 0.4 & -1 \dots 1 & -1 \dots 2 & -1 \dots 4 & -1 \dots 10 \\ \hline \text{Overpressure} & bar & 2 & 5 & 10 & 20 & 40 \\ \hline \text{Burst pressure} & bar & 3 & 7.5 & 15 & 25 & 50 \\ \hline \text{Pressure ranges DMP 333 i}^{1} & & & & & & \\ \hline \text{Nominal pressure} & bar & 60 & 100 & 200 & 400 & 600 \\ \hline \text{Overpressure} & bar & 60 & 100 & 200 & 400 & 1050 & 1250 \\ \hline \text{Burst pressure} & bar & 420 & 420 & 1000 & 1050 & 1250 \\ \hline \text{Burst pressure} & bar & 420 & 420 & 1000 & 1050 & 1250 \\ \hline \text{Burst pressure} & bar & 420 & 420 & 1000 & 1050 & 1250 \\ \hline \text{Burst pressure} & bar & 0.4 & 1 & 2 & 4 & 10 & 20 & 40 \\ \hline \text{Level gauge} & bar & 0.4 & 1 & 2 & 4 & 10 & 20 & 40 \\ \hline \text{Gauge / absolute} & bar & 0.4 & 1 & 2 & 4 & 10 & 20 & 40 \\ \hline \text{Level gauge} & bar & 2 & 5 & 10 & 20 & 40 & 100 \\ \hline \text{Concommer request we adjust the device within the turn-down-possibility by software on the required pressure range.} \\ \hline \hline \text{To customer request we adjust the device within the turn-down-possibility by software on the required pressure range.} \\ \hline \text{Concommer request we adjust the device within the turn-down-possibility by software on the required pressure range.} \\ \hline \text{Concommer request we adjust the device within the turn-down-possibility by software on the required pressure range.} \\ \hline \text{Concommer request we adjust the device within the turn-down-possibility by software on the required pressure range.} \\ \hline \text{Conton IS-protection} & 2 - wire: 4 \dots 20 \text{ mA} / V_{g} = 14 \dots 28 V_{0C} \\ \hline \text{Contomer request we adjust the device with in the turn-down possibility by software on the required pressure range < 0.40 bar see note $\leq \pm (0.1 + 0.015 \times 10^{\circ} N^{\circ} SSO) + 10^{\circ} N^{\circ} SSO \\ \hline Performa$	Pressure ranges DMP 3	31 i '									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-		0.4	1	2	4	10	20	40		
Burst pressure [bar] 3 7,5 15 25 50 120 210 'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range. Vacuum ranges Nominal pressure [bar] -0.4 -11 -12 -14 -110 Overpressure [bar] 2 5 10 20 400 Burst pressure [bar] 3 7.5 15 25 50 Pressure ranges DMP 333 i Nominal pressure [bar] 60 100 200 400 600 Overpressure [bar] 210 210 600 1050 1250 Burst pressure [bar] 420 420 1000 1250 1250 Burst pressure [bar] 420 420 1000 1250 1250 'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range. Pressure ranges LMP 331 i' Nominal pressure [bar] 0.4 1 2 4 10 20 400 Overpressure [bar] 3 7.5 15 25 80 1250 'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range. Pressure ranges LMP 331 i' Nominal pressure [bar] 3 7.5 15 25 80 120 201 Overpressure [bar] 3 7.5 15 25 80 120 210 'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range. Output signal / Supply Standard 2 -wire: 420 mA / V _S = 1236 V _{DC} Option IS-protection 2-wire: 420 mA / V _S = 1236 V _{DC} Option S-2	gauge / absolute	[bar]	0.4	I	2	4	10	20	40		
¹ On customer request we adjust the device within the turn-down-possibility by software on the required pressure range. Vacuum ranges Vacuum ranges Nominal pressure [bar] 0.4 -1 1 1 .2 0 40 Burst pressure [bar] 2 5 10 20 40 Burst pressure ranges DMP 30 31 ¹ Nominal pressure [bar] 60 100 200 400 600 Overpressure ranges DMP 30 31 ¹ Nominal pressure [bar] 210 210 600 1050 1250 Overpressure [bar] 420 420 1000 1250 1250 1250 On customer request wa adjust the device within the turn-down-possibility by software on the required pressure range. Pressure ranges LMP 331 i ¹ Nominal pressure [bar] 0.4 1 2 4 10 20 40 Level gauge (bar] 0.4 1 2 4 10 20 40 Deverpressure [bar] 4 10 20 40 80 105 Overpressure [bar] 3 <t< td=""><td>Overpressure</td><td>[bar]</td><td>2</td><td></td><td>1</td><td>20</td><td>40</td><td>80</td><td>105</td></t<>	Overpressure	[bar]	2		1	20	40	80	105		
Vacuum ranges Nominal pressure [bar] -0.4 0.4 -1 1 -1 2 -1 4 -1 10 Overpressure [bar] 2 5 10 20 40 Burst pressure [bar] 3 7.5 15 25 50 Pressure ranges DMP 333 i Nominal pressure [bar] 60 100 200 400 600 Overpressure [bar] 210 210 600 1050 1250 Burst pressure [bar] 420 420 1000 1250 1250 Pressure ranges LMP 331 i Nominal pressure (bar] 0.4 1 2 4 10 20 40 Level gauge (bar] 0.4 1 2 4 10 20 40 Overpressure [bar] 0.4 1 2 4 10 20 40 Level gauge (ball 0.4 10 20 40 100 200 400 Ov			-						210		
Nominal pressure[bar]-0.4-11-12-14-110Overpressure[bar]2510204040Burst pressure[bar]37.5152550Pressure ranges DMP 333 iiNominal pressure[bar]60100200400600Overpressure[bar]61100200400600Overpressure[bar]420420100012501250Or custome request we adjust the device within the turn-down-possibility by software on the required pressure range.Pressure ranges LMP 331 iNominal pressure[bar]0.41241020400Query pressure[bar]0.4120404040Level gauge(bar]41020404040Over pressure[bar]2510204080105User gauge / absolute[bar]2510204080105Isrst pressure[bar]2510204080105Output signal / SupplySoftware on the required pressure range.Output signal / Supply2-wire:42310202-wire:4220MAV _S = 1236V _{OC} 2Options2-wire:42-wire:433 <td>¹ On customer request we ad</td> <td>djust the d</td> <td>evice within the</td> <td>e turn-down-po</td> <td>ssibility by so</td> <td>ftware on the req</td> <td>uired pressure</td> <td>e range.</td> <td></td>	¹ On customer request we ad	djust the d	evice within the	e turn-down-po	ssibility by so	ftware on the req	uired pressure	e range.			
Overpressure[bar]25102040Burst pressure[bar]37.5152550Pressure ranges DMP 333 i *Nominal pressure[bar]60100200400600Overpressure[bar]21021060010501250Burst pressure[bar]420420100012501250* On sustomer request we adjust the device within the turn-down-possibility by software on the required pressure range.Pressure ranges LMP 331 i*Nominal pressure[bar]0.41241020400Level gauge[bar]2510204080105Overpressure[bar]2510204080105Burst pressure[bar]37.5152580120210* On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Output signal / SupplyStandard2-wire:42230120210* On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Output signal / SupplyStandard2-wire:42230120210Option IS-protection2-wire:423002* On 10 V/ Vs = 1436 Vpc0000* only	Vacuum ranges										
Burst pressure[bar]37.5152550Pressure ranges DMP 333 iNominal pressureNominal pressure[bar]60100200400600Overpressure[bar]21021060010501250Insurst pressure[bar]420420100012501250'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Pressure ranges LMP 331 iNominal pressure[bar]0.4124102040Level gauge[bar]410204040100200400Overpressure[bar]2510204080105Burst pressure[bar]37.5152580120210'O noustomer request we adjust the device within the turn-down-possibility by software on the required pressure range.Output signal / SupplyStandard2-wire:442422Options2-wire:420 MA/ Vs = 1428 Vpc2-wire:010 V/ Vs = 1428 Vpc2000.010 V/ Vs = 1430 Vpc010 V/ Vs = 1430 Vpc24for calculation use the following formula (for nominal pressure ranges < 0.40 bar see note <± 10.1 + 0.015 x turn-down of 1:10	Nominal pressure	[bar]	-0.4 0.4	4 -	1 1	-1 2	-1.	4	-1 10		
Pressure ranges DMP 333 i 1Nominal pressure gauge / absolute[bar]60100200400600Overpressure 'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.12501250Pressure ranges LMP 331 i1124102040Nominal pressure gauge / absolute[bar]0.4124102040Level gauge 0 (bar)[bar]0.4124102040Overpressure gauge / absolute[bar]2510204080105Level gauge 0 (bar)12510204080105Output signal / Supply2510204080105Otpoin IS-protection 0 Option IS-protection2-wire:4 20 mA / V _S = 12 36 V _{DC} 0Option IS-protection 0 Option S2-wire:4 20 mA / V _S = 14 28 V _{DC} 0Option S2-wire:4 20 mA / V _S = 14 36 V _{DC} 000 on to work ever 0 on 10 V with communication interface 23332 only possible with el. connection Binder series 723 (7-pin)PerformancePerformance10.1 & 0.015 × turn-down] % FSOwith turn-down = nominal pressure range / adjusted range e.g. with a turn-down] % FSOwith turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is < 4.0.25 % FSO	Overpressure	[bar]	2		5	10	2	20	40		
$ \begin{array}{ c c c c c } Nominal pressure & bar & 60 & 100 & 200 & 400 & 600 \\ \hline gauge / absolute & bar & 210 & 210 & 600 & 1050 & 1250 & 1250 \\ \hline Overpressure & bar & 420 & 420 & 1000 & 1250 & 1250 & 1250 \\ \hline O n customer request we adjust the device within the turn-down-possibility by software on the required pressure range. \\ \hline Pressure ranges LMP 33 i 1 & \\ \hline Nominal pressure & bar & 0.4 & 1 & 2 & 4 & 10 & 20 & 40 \\ \hline Level gauge / absolute & bar & 2 & 5 & 10 & 20 & 40 & 80 & 105 \\ \hline D customer request we adjust the device within the turn-down-possibility by software on the required pressure range. \\ \hline Level gauge / absolute & bar & 2 & 5 & 10 & 20 & 40 & 80 & 105 \\ \hline D customer request we adjust the device within the turn-down-possibility by software on the required pressure range. \\ \hline D customer request we adjust the device within the turn-down-possibility by software on the required pressure range. \\ \hline Output signal / Supply \\ \hline Standard & 2-wire: 4 20 mA / V_S = 12 36 V_{DC} \\ \hline Option IS-protection & 2-wire: 4 20 mA / V_S = 14 28 V_{DC} \\ \hline Option IS-protection & 2-wire: 4 20 mA / V_S = 14 36 V_{DC} \\ \hline Output signal / Supply \\ \hline Accuracy & v c c & 0 & 10 & V & V_S = 14 36 V_{DC} \\ \hline Performance & \\ \hline Accuracy & v c & 0.10 V & V_S = 14 36 V_{DC} \\ \hline Accuracy & z (0.1 + 0.015 \times turn-down] \% FSO \\ \hline with turn-down = nominal pressure range / adjusted range \\ e.g. with a turn-down of 1:10 following accuracy is calculated: \\ \leq 1(0.1 + 0.015 \times turn-down] \% FSO \\ \hline with turn-down = nominal pressure range / adjusted range \\ e.g. with a turn-down of 1:10 following accuracy is calculated: \\ \leq 1(0.1 + 0.015 \times turn-down] \% FSO \\ \hline Permissible load \\ \hline Current 2-wire: R_{max} = [(V_S - V_S \min) / 0.02 A] \Omega \\ \hline Outge 3-wire: R_{min} = 10 k\Omega \\ \hline Influence effects \\ \ Supply: 0.05 \% FSO / 10 V \\ \hline Ioad: 0.05 \% FSO / k\Omega \\ \hline Dadie & Supply: 0.05 \% FSO / 10 V \\ \hline Ioad: 0.05 \% FSO / k\Omega \\ \hline Dadie & Supply: 0.05 \% FSO / 10 V \\ \hline Ioad: 0.05 \% FSO / k\Omega \\ \hline Dadie & Supply: 0.05 \% FSO / 1$	Burst pressure	[bar]	3		7.5	15	2	25	50		
Nominal pressure gauge / absolute[bar]60100200400600Overpressure 0 loar[bar]210210600105012501250Burst pressure 0 nustomer request we adjust the device within the turn-down-possibility by software on the required pressure range.125012501250Pressure ranges LMP 33 i 10.41241020400Nominal pressure gauge / absolute[bar]0.41241020400Level gauge 0 regues we adjust the device within the turn-down-possibility by software on the required pressure range.400200400Overpressure 0 regues we adjust the device within the turn-down-possibility by software on the required pressure range.200400Output signal / Supply 0 fon customer request we adjust the device within the turn-down-possibility by software on the required pressure range.200400Option IS-protection 0 for customer request we adjust the device within the turn-down-possibility by software on the required pressure range.200200Option IS-protection 0 for 0 ustomer series 723 (7-pin)2-wire: 4 20 mA / Vs = 14 28 Vpc 0 10 V / Vs = 14 36 Vpc 0 10 V / Vs = 14 36 Vpc2-wire: 4 20 mA / Vs = 14 20 K VpcPerformance a for calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note ≤ 10.1 + 0.015 x turn-down of 1:10 following accuracy is calculated: ≤ 10.1 + 0.015 x turn-down of % FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calcula	Pressure ranges DMP 3	33 i ¹									
$ \begin{array}{ c c c c c } \hline gauge / absolute & bar & bar$			<u> </u>		100	200		00	<u> </u>		
Burst pressure[bar]420420100012501250? On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Pressure rangesImage: Constraint of the target of targe	gauge / absolute	[bar]	60		100	200	40	00	600		
1 On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Pressure ranges LMP 331 iNominal pressure gauge (bar)0.4124102040Level gauge (bar)4102040100200400Overpressure (bar)2510204080105Burst pressure (bar)37.5152580120210On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Output signal / SupplyStandard2-wire:4 20 mA // Vs = 12 36 VpcOption IS-protection2-wire:4 20 mA // Vs = 14 26 VpcOptions2-wire:4 20 mA // Vs = 14 36 VpcOptions2-wire:4 20 mA // Vs = 14 36 VpcOptions2-wire:4 20 mA // Vs = 14 36 Vpc0 10 V/ Vs = 14 36 Vpc0 10 V with communication interface 23-only possible with el. connection Binder series 723 (7-pin)PerformanceAccuracy performance after turn-down - TD > 1:50calculation use the following formula (for nominal pressure ranges < 0.40 bar see note < ± [0.1 + 0.015 x turn-down] % FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: < ± (0.1 + 0.015 x 10) % FSO / 10 V load:0.05 % FSO	Overpressure	[bar]	210		210	600	10)50	1250		
Pressure ranges LMP 331 i 1Nominal pressure gauge / absolute[bar]0.4124102040Level gauge[bar]4102040100200400Overpressure[bar]2510204080105Burst pressure[bar]37.5152580120210' On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Output signal / SupplyStandard2-wire:4 20 mA / V _S = 12 36 V _{DC} Option IS-protection2-wire:4 20 mA / V _S = 14 28 V _{DC} Option S2-wire:4 20 mA vith communication interface ² 3-wire:0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V / V _S = 14 36 V _{DC} 0 10 V with communication interface ² ² only possible with el. connection Binder series 723 (7-pin)PerformanceAccuracyerformance after turn-down- TD > 1:5for calculation use the following formula (for nominal pressure ranges < 0.40 bar see n	Burst pressure	[bar]	420		420	1000	12	250	1250		
$\begin{array}{ c c c c c } \hline Nominal pressure & [bar] & 0.4 & 1 & 2 & 4 & 10 & 20 & 40 \\ \hline gauge / absolute & [bar] & 4 & 10 & 20 & 40 & 100 & 200 & 400 \\ \hline Overpressure & [bar] & 2 & 5 & 10 & 20 & 40 & 80 & 105 \\ \hline Burst pressure & [bar] & 3 & 7.5 & 15 & 25 & 80 & 120 & 210 \\ \hline Output signal / Supply \\ \hline Output signal / Suppl$	¹ On customer request we ac	djust the d	evice within the	e turn-down-po	ssibility by so	ftware on the req	uired pressure	e range.			
$\begin{array}{ c c c c c } \hline Nominal pressure & [bar] & 0.4 & 1 & 2 & 4 & 10 & 20 & 40 \\ \hline auge / absolute & [bar] & 4 & 10 & 20 & 40 & 100 & 200 & 400 \\ \hline Overpressure & [bar] & 2 & 5 & 10 & 20 & 40 & 80 & 105 \\ \hline Burst pressure & [bar] & 3 & 7.5 & 15 & 25 & 80 & 120 & 210 \\ \hline Output signal / Supply \\ \hline Output signal / Supply \\ \hline Standard & 2-wire: & 4 20 mA / V_{s} = 12 36 V_{DC} \\ \hline Option IS-protection & 2-wire: & 4 20 mA / V_{s} = 14 28 V_{DC} \\ \hline Option S & 2-wire: & 4 20 mA / V_{s} = 14 28 V_{DC} \\ \hline Option S & 2-wire: & 4 20 mA with communication interface ^{2} \\ 3-wire: & 0 10 V with communication interface ^{2} \\ \hline 2 - 0 10 V with the series 723 (7-pin) \\ \hline Performance \\ \hline Accuracy \\ performance after turn-down \\ - TD \leq 1.5 & 0 \\ rot calculation use the following formula (for nominal pressure ranges < 0.40 bar see note \\ \leq \pm (0.1 + 0.015 \times turn-down] \% FSO \\ with turn-down = nominal pressure range / adjusted range \\ e.g. with a turn-down of 1:10 following accuracy is calculated: \\ \leq \pm (0.1 + 0.015 \times 10) \% FSO i.e. accuracy is \leq \pm 0.25 \% FSO \\ \hline Permissible load \\ \hline Current 2-wire: R_{max} = [(V_{S} - V_{S} \min) / 0.02 A] \Omega voltage 3-wire: R_{min} = 10 k\Omega \\ Influence effects \\ supply: 0.05 \% FSO / year \\ \hline Response time \\ \hline approx. 200 msec \\ \hline \end{array}$	Pressure ranges LMP 33	31 i ¹									
gauge / absolutetototoLevel gauge[bar]4102040100200400Overpressure[bar]2510204080105Burst pressure[bar]37.5152580120210' On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Output signal / SupplyStandard2-wire:4 20 mA / V _S = 12 36 V _{DC} Option IS-protection2-wire:4 20 mA with communication interface ² 3-wire:0 10 V / V _S = 14 28 V _{DC} Options2-wire:4 20 mA with communication interface ² *-wire:0 10 V / V _S = 14 36 V _{DC} 0 10 V with communication interface ² *-wire:0 10 V / V _S = 14 36 V _{DC} PerformanceAccuracyperformance after turn-down- TD ≥ 1:5- TD > 1:5Permissible loadcurrent 2-wire: R _{max} = [(V _S - V _S min) / 0.02 A] Ωvoltage 3-wire: R _{min} = 10 kΩInfluence effectssupply:0.05 % FSO / 10 VLong term stability≤ ± (0.1 × turn-down) % FSO / yearResponse time			0.4		2		10		40		
Overpressure[bar]2510204080105Burst pressure[bar]37.5152580120210'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.210Output signal / SupplyStandard2-wire:4 20 mA / $V_S = 12 36 V_{DC}$ 0Option IS-protection2-wire:4 20 mA / $V_S = 14 28 V_{DC}$ 0Options2-wire:4 20 mA with communication interface ² 3-wire:0 10 V / $V_S = 14 36 V_{DC}$ Options2-wire:0 10 V / $V_S = 14 36 V_{DC}$ 0 10 V with communication interface ² "only possible with el. connection Binder series 723 (7-pin)PerformancePerformance after turn-down- TD > 1:5no change of accuracy ⁴ ' TD > 1:5no change of accuracy ⁴ ' or calculation use the following formula (for nominal pressure range < 0.40 bar see note	gauge / absolute	[bar]	0.4	1	2	4	10	20	40		
Burst pressure[bar]37.5152580120210'On customer request we adjust the device within the turn-down-possibility by software on the required pressure range.Output signal / SupplyStandard2-wire:4 20 mA / $V_S = 12 36 V_{DC}$ Option IS-protection2-wire:4 20 mA / $V_S = 14 28 V_{DC}$ Options2-wire:4 20 mA vith communication interface ² 3-wire:0 10 V / $V_S = 14 36 V_{DC}$ 0 10 V / $V_S = 14 36 V_{DC}$ 0 10 V with communication interface ² ***********************************	Level gauge	[bar]	4	10	20	40	100	200	400		
¹ On customer request we adjust the device within the turn-down-possibility by software on the required pressure range. Output signal / Supply Standard 2-wire: 4 20 mA / V _S = 12 36 V _{DC} Option IS-protection 2-wire: 4 20 mA / V _S = 14 28 V _{DC} Options 2-wire: 4 20 mA with communication interface ² 3-wire: 0 10 V / V _S = 14 36 V _{DC} 3-wire: 0 10 V with communication interface ² 2 only possible with el. connection Binder series 723 (7-pin) Performance Accuracy IEC 60770 ³ : ≤ ± 0.1 % FSO performance after turn-down - TD > 1:5 no change of accuracy ⁴ for calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note ≤ ± [0.1 + 0.015 x turn-down] % FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: ≤ ± (0.1 + 0.015 x 10) % FSO i.e. accuracy is ≤ ± 0.25 % FSO Permissible load current 2-wire: R _{max} = [(V _S - V _S min) / 0.02 A] Ω voltage 3-wire: R _{min} = 10 kΩ Influence effects supply: 0.05 % FSO / 10 V load: 0.05 % FSO / kΩ Long term stability ≤ ± (0.1 x turn-down) % FSO / year Response time	Overpressure	[bar]	2	5	10	20	40	80	105		
Output signal / SupplyStandard2-wire:4 20 mA / $V_s = 12$ 36 V_{DC} Option IS-protection2-wire:4 20 mA / $V_s = 14$ 28 V_{DC} Options2-wire:4 20 mA with communication interface 23-wire:0 10 V / $V_s = 14$ 36 V_{DC} 0 10 V with communication interface 22-only possible with el. connection Binder series 723 (7-pin)PerformanceAccuracyperformance after turn-down- TD ≤ 1:5- TD > 1:5IEC 60770 3 : $\leq \pm 0.1$ % FSOwith turn-down = nominal pressure range < 0.40 bar see note	Burst pressure		3	7.5	15	25	80	120	210		
Standard2-wire:4 20 mA/ $V_s = 12 \dots 36 V_{DC}$ Option IS-protection2-wire:4 20 mA/ $V_s = 14 \dots 28 V_{DC}$ Options2-wire:4 20 mA with communication interface 2 3-wire:0 10 V/ $V_s = 14 \dots 36 V_{DC}$ 0 10 V possible with el. connection Binder series 723 (7-pin)PerformanceAccuracyIEC 60770 3 : $\leq \pm 0.1 \%$ FSOperformance after turn-down- TD $\leq 1:5$ - TD > 1:5Berformance- TD > 1:5PerformanceConsider series 723 (7-pin)PerformanceAccuracyperformance after turn-down- TD $\leq 1:5$ - TD > 1:5PerformanceSturn-down- TD > 1:5Descreta and the turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times turn-down] \%$ FSOwith turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: $R_{max} = [(V_s - V_s min) / 0.02 A] \Omega$ voltage 3-wire: $R_{min} = 10 \ M\Omega$ Influence effectssupply:0.05 % FSO / 10 VLong term stability $\leq \pm (0.1 \times turn-down) \%$ FSO / yearResponse time	¹ On customer request we ad	djust the d	evice within the	e turn-down-po	ssibility by so	ftware on the req	uired pressure	e range.			
Standard2-wire:4 20 mA/ $V_s = 12 \dots 36 V_{DC}$ Option IS-protection2-wire:4 20 mA/ $V_s = 14 \dots 28 V_{DC}$ Options2-wire:4 20 mA with communication interface 2 3-wire:0 10 V/ $V_s = 14 \dots 36 V_{DC}$ 0 10 V possible with el. connection Binder series 723 (7-pin)PerformanceAccuracyIEC 60770 3 : $\leq \pm 0.1 \%$ FSOperformance after turn-down- TD $\leq 1:5$ - TD > 1:5no change of accuracy 4 for calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note $\leq \pm [0.1 + 0.015 \times turn-down] \%$ FSOwith turn-down = nominal pressure range / adjusted rangee.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: $R_{max} = [(V_s - V_s min) / 0.02 A] \Omega$ voltage 3-wire: $R_{min} = 10 \ k\Omega$ Influence effectssupply:supply:0.05 \% FSO / 10 VLong term stability $\leq \pm (0.1 \times turn-down) \%$ FSO / yearResponse timeapprox. 200 msec	Output signal / Supply										
Option IS-protection2-wire:4 20 mA/ $V_s = 14 28 V_{DC}$ Options2-wire:4 20 mA with communication interface 23-wire:0 10 V/ $V_s = 14 36 V_{DC}$ 0 10 V with communication interface 22 only possible with el. connection Binder series 723 (7-pin)PerformanceAccuracyIEC 60770 3 : $\leq \pm 0.1 \%$ FSOperformance after turn-down - TD $\leq 1:5$ IEC 60770 3 : $\leq \pm 0.1 \%$ FSOrow calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note $\leq \pm [0.1 + 0.015 \times turn-down] \%$ FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: $R_{max} = [(V_s - V_s min) / 0.02 A] \Omega$ voltage 3-wire: $R_{min} = 10 \ k\Omega$ Influence effectssupply:0.05 % FSO / 10 VLong term stability $\leq \pm (0.1 \times turn-down) \%$ FSO / yearResponse timeapprox. 200 msec			2-wire 4	20 mA / \	/ _c = 12 36	Vpc					
Options2-wire:4 20 mA with communication interface 2 3-wire:0 10 V/ V_s = 14 36 V_{DC} 0 10 V with communication interface 2 2 only possible with el. connection Binder series 723 (7-pin)PerformanceAccuracyIEC 60770 3 : $\leq \pm 0.1 \%$ FSO performance after turn-down - TD $\leq 1:5$ - TD > 1:5IEC 60770 3 : $\leq \pm 0.1 \%$ FSO mo change of accuracy 4 for calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note $\leq \pm [0.1 + 0.015 \times turn-down] \%$ FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: $R_{max} = [(V_s - V_s min) / 0.02 A] \Omega$ voltage 3-wire: $R_{min} = 10 \ k\Omega$ Long term stabilitySupply:0.05 \% FSO / 10 Vload:0.05 $\%$ FSO / 10 V0.05 $\%$ FSO / 10 V0.05 $\%$ FSO / 200 msec											
3 -wire: $0 \dots 10 \ V$ $V_S = 14 \dots 36 \ V_{DC}$ $0 \dots 10 \ V$ with communication interface 2 2 only possible with el. connection Binder series 723 (7-pin) Performance Accuracy performance after turn-down - TD $\leq 1:5$ - TD > 1:5IEC 60770 3 : $\leq \pm 0.1 \%$ FSO no change of accuracy 4 for calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note $\leq \pm [0.1 + 0.015 \times turn-down] \%$ FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: $R_{max} = [(V_S - V_S \min) / 0.02 \ A] \Omega$ voltage 3-wire: $R_{min} = 10 \ k\Omega$ lnfluence effectssupply: 0.05% FSO / 10 Vload:0.05 \% FSO / k\OmegaLong term stability $\leq \pm (0.1 \times turn-down) \%$ FSO / year approx. 200 msec	· · · · · · · · · · · · · · · · · · ·										
$\begin{array}{ c c c c c } \hline 0 & \dots 10 \ V \ with \ communication \ interface ^2 \\ \hline 0 \ no \ connection \ Binder \ series \ 723 \ (7-pin) \\ \hline Performance \\ \hline Accuracy \\ performance \ after \ turn-down \\ - \ TD \le 1:5 \\ - \ TD > 1:5 \\ \hline D > 1:5 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$											
Performance Accuracy IEC 60770 3 : $\leq \pm 0.1 \%$ FSO performance after turn-down no change of accuracy 4 - TD $\leq 1:5$ for calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note $\leq \pm [0.1 + 0.015 \times \text{turn-down}] \%$ FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSO Permissible load current 2-wire: R _{max} = [(V _S - V _S min) / 0.02 A] \Omega voltage 3-wire: R _{min} = 10 kΩ Influence effects supply: 0.05 % FSO / 10 V load: 0.05 % FSO / kΩ Long term stability $\leq \pm (0.1 \times \text{turn-down}) \%$ FSO / year Response time			3-wire: 0	.10 V / V	vs = 14 30	VDC					
Accuracy performance after turn-down - TD \leq 1:5 - TD > 1:5IEC 60770 3 : $\leq \pm 0.1 \%$ FSO no change of accuracy 4 for calculation use the following formula (for nominal pressure ranges ≤ 0.40 bar see note $\leq \pm [0.1 + 0.015 \times turn-down] \%$ FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: $R_{max} = [(V_S - V_S \min) / 0.02 \text{ A}] \Omega$ voltage 3-wire: $R_{min} = 10 \text{ k}\Omega$ Influence effectssupply: 0.05 \% FSO / 10 VLong term stability $\leq \pm (0.1 \times turn-down) \%$ FSO / yearResponse timeapprox. 200 msec					-						
performance after turn-down - TD \leq 1:5no change of accuracy 4 for calculation use the following formula (for nominal pressure ranges \leq 0.40 bar see note $\leq \pm [0.1 + 0.015 \times \text{turn-down}] \%$ FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: R _{max} = [(V _S - V _S min) / 0.02 A] Ω voltage 3-wire: R _{min} = 10 k Ω Influence effectssupply:0.05 \% FSO / 10 VLong term stability $\leq \pm (0.1 \times \text{turn-down}) \%$ FSO / yearResponse timeapprox. 200 msec	² only possible with el. conn	ection Bind	0	. 10 V with co	-						
performance after turn-down - TD \leq 1:5no change of accuracy 4 for calculation use the following formula (for nominal pressure ranges \leq 0.40 bar see note $\leq \pm [0.1 + 0.015 \times \text{turn-down}] \%$ FSO with turn-down = nominal pressure range / adjusted range e.g. with a turn-down of 1:10 following accuracy is calculated: $\leq \pm (0.1 + 0.015 \times 10) \%$ FSO i.e. accuracy is $\leq \pm 0.25 \%$ FSOPermissible loadcurrent 2-wire: R _{max} = [(V _S - V _S min) / 0.02 A] Ω voltage 3-wire: R _{min} = 10 k Ω Influence effectssupply:0.05 \% FSO / 10 VLong term stability $\leq \pm (0.1 \times \text{turn-down}) \%$ FSO / yearResponse timeapprox. 200 msec		ection Bind	0	. 10 V with co	-						
$\begin{array}{lll} \label{eq:starses} - \mbox{TD} \leq 1:5 & \mbox{no change of accuracy }^4 & \mbox{for calculation use the following formula (for nominal pressure ranges \leq 0.40 bar see note $$$ \leq \pm [0.1 + 0.015 \mbox{ turn-down}] \% \mbox{FSO} & \mbox{with turn-down = nominal pressure range / adjusted range $$ e.g. with a turn-down of 1:10 following accuracy is calculated: $$$ \leq \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.1 + 0.015 \mbox{ x 10}) \% \mbox{FSO} & \mbox{is calculated: $$$ = \pm (0.25 \mbox{ FSO} & \mbox{is calculated: $$$ = \pm (0.1 \mbox{ voltage 3-wire: $$$$ $$$$ $$ $$ = 10 \mbox{ k}\Omega$ & is calculated: $$$ = \pm (0.1 \mbox{ voltage 3-wire: $$$$$$$$ $$ $$ $$ $$ $$ = 0.05 \mbox{ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Performance	ection Bind	0 der series 723 (7	. 10 V with co 7-pin)	mmunicatio						
$eq:started_st$	Performance Accuracy		0 der series 723 (7	. 10 V with co 7-pin)	mmunicatio						
$ \begin{array}{l ll} \leq \pm \left[0.1 + 0.015 \ x \ turn-down\right] \% \ FSO \\ \ with \ turn-down = nominal \ pressure \ range \ / \ adjusted \ range \\ e.g. \ with \ a \ turn-down \ of \ 1:10 \ following \ accuracy \ is \ calculated: \\ \leq \pm \ (0.1 + 0.015 \ x \ 10) \ \% \ FSO \ i.e. \ accuracy \ is \ \leq \pm \ 0.25 \ \% \ FSO \\ \hline \end{array} $	Performance Accuracy performance after turn-d		0 der series 723 (7 IEC 60770 ³ : :	. 10 V with co 7-pin) ≤ ± 0.1 % FSC	mmunicatio						
$ \begin{array}{lll} \mbox{with turn-down = nominal pressure range / adjusted range} \\ \mbox{e.g. with a turn-down of 1:10 following accuracy is calculated:} \\ \mbox{$\leq \pm (0.1 + 0.015 \times 10) \% FSO $i.e. accuracy is $\leq \pm 0.25 \% FSO $} \\ \hline \mbox{Permissible load} & \mbox{current 2-wire: $R_{max} = [(V_S - V_S min) / 0.02 A] Ω voltage 3-wire: $R_{min} = 10 k\Omega$ $ \\ \hline \mbox{Influence effects} & \mbox{supply: } 0.05 \% FSO / 10 V $$ load: $ 0.05 \% FSO / k\Omega$ $ \\ \hline \mbox{Long term stability} & \mbox{$\leq \pm (0.1 \times turn-down) \% FSO / year$ $ \\ \hline \mbox{Response time} & \mbox{approx. 200 msec} $ \\ \hline \end{tabular} $	Performance Accuracy performance after turn-d - TD ≤ 1:5		0 der series 723 (7 IEC 60770 ³ : no change o	. 10 V with co 7-pin) ≤ ± 0.1 % FSC f accuracy ⁴	mmunicatio	on interface ²	al pressure r	anges < 0.40	har see note 3		
eq:e.g.with a turn-down of 1:10 following accuracy is calculated:\$	Performance Accuracy performance after turn-d - TD ≤ 1:5		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatio	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol	lowing form	on interface ²	al pressure ra	anges ≤ 0.40 \	bar see note 3		
$ \begin{array}{l ll} \leq \pm \ (0.1 + 0.015 \ x \ 10) \ \% \ FSO \ i.e. \ accuracy \ is \leq \pm \ 0.25 \ \% \ FSO \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Performance Accuracy performance after turn-d - TD ≤ 1:5		$\begin{array}{c} 0 & \dots \\ \text{der series 723 (7)} \\ \text{IEC 60770 }^3 \vdots \\ \text{no change o} \\ \text{for calculation} \\ \leq \pm \left[0.1 + 0.0 \right] \end{array}$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-dov	Iowing form wn] % FSO	n interface ²	•	anges ≤ 0.40	bar see note 3		
Permissible loadcurrent 2-wire: $R_{max} = [(V_S - V_S \min) / 0.02 \text{ A}] \Omega$ voltage 3-wire: $R_{min} = 10 \text{ k}\Omega$ Influence effectssupply: 0.05 % FSO / 10 Vload: 0.05 % FSO / kΩLong term stability $\leq \pm (0.1 \text{ x turn-down}) \%$ FSO / yearResponse timeapprox. 200 msec	Performance Accuracy performance after turn-d - TD ≤ 1:5		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatio $\leq \pm [0.1 + 0.0$ with turn-do	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the foll 115 x turn-dow wn = nomina	Iowing form wn] % FSO Il pressure r	n interface ² nula (for nomina ange / adjusted	range	anges ≤ 0.40	bar see note 3		
Influence effects supply: 0.05 % FSO / 10 V load: 0.05 % FSO / kΩ Long term stability ≤ ± (0.1 x turn-down) % FSO / year approx. 200 msec Example 100 msec	Performance Accuracy performance after turn-d - TD ≤ 1:5		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatio $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the foll 15 x turn-down wn = nomination urn-down of 2	Iowing form wn] % FSO Il pressure r I:10 followir	n interface ² nula (for nomina ange / adjusted ng accuracy is c	range alculated:	anges ≤ 0.40	bar see note 3		
Long term stability < ± (0.1 x turn-down) % FSO / year	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5		$\begin{array}{c} 0 & \dots \\ \text{der series 723 (7)} \\ \text{IEC 60770 }^3:\\ \text{no change of for calculation} \\ \leq \pm \left[0.1 + 0.0 \\ \text{with turn-do } \\ \text{e.g. with a tu} \\ \leq \pm \left(0.1 + 0.0 \right) \end{array}$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-down wn = nomination urn-down of 2 15 x 10) % FSC	Iowing form wn] % FSO Il pressure r I:10 followin SO i.e. accu	nula (for nominange / adjusted ng accuracy is c racy is $\leq \pm 0.25$	range alculated: % FSO	-	bar see note 3		
Response time approx. 200 msec	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir	. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomina urn-down of 2 15 x 10) % FS re: R _{max} = [(V _S	lowing form wn] % FSO Il pressure r. I:10 followin SO i.e. accu 3 – V _S min) /	nula (for nomina ange / adjusted og accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt	range alculated: % FSO age 3-wire: R	R _{min} = 10 kΩ	bar see note 3		
	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects		$\begin{array}{c} 0 & \dots \\ \text{der series 723 (7)} \\ \text{IEC 60770 }^3 \vdots \\ \text{no change of for calculation} \\ \leq \pm [0.1 + 0.0] \\ \text{with turn-do e.g. with a tu} \\ \leq \pm (0.1 + 0.0] \\ \text{current 2-wirr supply: 0} \end{array}$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-dow wn = nomination urn-down of $\frac{7}{1015}$ $\overline{715} \times 10) \%$ FS $\overline{7e: R_{max}} = [(V_{s})$	lowing form wn] % FSO Il pressure r. I:10 followir SO i.e. accu 3 – V _S min) / 0 V	nula (for nomina ange / adjusted og accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt	range alculated: % FSO age 3-wire: R	R _{min} = 10 kΩ	bar see note 3		
Adjustability configuration of following parameters possible (interface / software pecessary ⁵):	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability		$\begin{array}{c} 0 & \dots \\ \text{der series 723 (7)} \\ \text{IEC 60770 }^3: \\ \end{array}$ no change of for calculatic set [0.1 + 0.0 with turn-do e.g. with a tu set (0.1 + 0.0 current 2-wir supply: 0 \\ \text{supply: 0} \\ \text{supply: 0} \\ \text{supply: 0} \end{array}	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 105 x turn-dow wn = nomina urn-down of 2^{-1} 105 x 10) % FS re: R _{max} = [(V _s .05 % FSO / 1 n-down) % FS	lowing form wn] % FSO Il pressure r. I:10 followir SO i.e. accu 3 – V _S min) / 0 V	nula (for nomina ange / adjusted og accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt	range alculated: % FSO age 3-wire: R	R _{min} = 10 kΩ	bar see note 3		
	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		$\begin{array}{c} 0 & \dots \\ \text{der series 723 (7)} \\ \text{IEC 60770 }^3: \\ \text{no change of for calculations} \\ \leq \pm [0.1 + 0.0] \\ \text{with turn-do e.g. with a tu } \\ \leq \pm (0.1 + 0.0] \\ \text{current 2-wirns} \\ \text{supply: 0} \\ \leq \pm (0.1 \times \text{turns}) \\ \text{approx. 200 to } \end{array}$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomina urn-down of $\frac{7}{100}$ $\overline{15} \times 10) \%$ FS $\overline{re: R_{max} = [(V_s)]}$.05 % FSO / 1 n-down) % FS msec	lowing form wn] % FSO Il pressure ra I:10 followir SO i.e. accu 3 – V _S min) / 0 V SO / year	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- electronic damping: 0 100 sec	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 findconfiguration$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{700} \times 100 \%$ FS $\overline{700} \times 100 \%$ FS	lowing form wn] % FSO Il pressure r. I:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- electronic damping: 0 100 sec - offset: 0 90 % FSO	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 forconfiguration- electronic o$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{15 \times 10} \%$ FSC $\overline{105 \%}$ FSC / 1 n-down) $\%$ FS msec n of following damping: 0	lowing form wn] % FSO Il pressure r. I:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 forconfiguration- electronic o- offset: 0$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{105 \times 10}$ % FSC $\overline{105 \%}$ FSC / 1 n-down) % FS msec n of following damping: 0 90 % FSC	lowing form wn] % FSO al pressure r. 1:10 followin 50 i.e. accu 3 – V _S min) / 0 V 50 / year g parameters . 100 sec	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- offset: 0 90 ½ FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability)	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability	lown 60770 – lim	0 der series 723 (7 IEC 60770 ³ : : no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 in configuration - electronic of - offset: 0 - turn down bit point adjustri	. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 2 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSO / 1 n-down) % FSO msec n of following damping: 0 90 % FSO of span: max ment (non-linear	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year g parameters 100 sec x. 1:10 arity, hysteres	the product of the second sec	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0 .40 bar; for these calculation of accuracy is as follows:	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 ⁴ except nominal pressure ra	lown 60770 – linr anges ≤ 0 .4	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 n configuration - electronic of - offset: 0 - turn down <i>it point adjustr.</i> 40 <i>bar; for these</i>	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FS re: R _{max} = [(V _S 1.05 % FSO / 1 n-down) % FS msec amping: 0 90 % FSO of span: max ment (non-lineage e calculation of	Iowing form wn] % FSO Il pressure ra I:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a	an interface ² ange / adjusted ange / adjusted accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter <i>is, repeatability)</i> <i>s follows:</i>	range alculated: % FSO age 3-wire: R id: 0.05 %	R _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 $\stackrel{?}{\text{FSO}}$ - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: $\leq \pm (0.1 + 0.02 \times \text{turn-down}) \%$ FSO e.g. turn-down of 1:3: $\leq \pm (0.1 + 0.02 \times 3) \%$ FSO i.e. accuracy is $\leq \pm 0.16 \%$ FSO	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t ⁴ except nominal pressure rescurations $\leq \pm (0.1 \pm 0.02 \times turn-down)$	lown 60770 - lim anges ≤ 0) % FSO e.e	0 der series 723 (7 IEC 60770 ³ : : no change or for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0]$ current 2-wir supply: 0. $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic of - offset: 0 - turn down int point adjustra 40 bar; for these g. turn-down of	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-dow wn = nomina urn-down of 75 115 x 10) % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x	Iowing form wn] % FSO Il pressure ra 1:10 followir SO i.e. accu $_{5} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteress f accuracy is a .02 x 3) % FS	buila (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ $0.02 \text{ A}] \Omega$ volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 \times FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: $\leq \pm (0.1 + 0.02 \times \text{turn-down}) \%$ FSO e.g. turn-down of 1:3: $\leq \pm (0.1 + 0.02 \times 3) \%$ FSO i.e. accuracy is $\leq \pm 0.16 \%$ FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2×10^{-5}	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 ⁴ except nominal pressure ra ≤± (0.1 + 0.02 x turn-down, ⁵ software, interface, and cal	lown 60770 – lim anges ≤ 0) % FSO e., ble have to	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic of - offset: 0 - turn down <i>it point adjustr.</i> 10 <i>bar; for these</i> <i>g. turn-down of</i> <i>be ordered sep</i>	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ f ac	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres. f accuracy is a 0.02 x 3) % FS are appropria	buila (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ $0.02 \text{ A}] \Omega$ volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: $\le \pm (0.1 + 0.02 \times \text{turn-down}) \%$ FSO e.g. turn-down of 1:3: $\le \pm (0.1 + 0.02 \times 3) \%$ FSO i.e. accuracy is $\le \pm 0.16 \%$ FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability accuracy according to IEC of texcept nominal pressure rational software, interface, and can Software, interface, and can Thermal effects (Offset	60770 – lim anges ≤ 0.4) % FSO e.ş ble have to : and Spa	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times 100)$ $\leq \pm (0.1 \times 100)$ configuration - electronic of offset: 0 - turn down of be ordered seg n) / Permissil	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 2 115 x 10) % FS 115 x 10) % FS 115 x 10) % FS 105 % FSO / 1 n-down) % FSO amping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres. f accuracy is a 0.02 x 3) % FS are appropria	buila (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ $0.02 \text{ A}] \Omega$ volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ $ k$FO} \\ - \text{ turn down of span: max. 1:10} \\ \end{array}$ $\begin{array}{c} a \text{ accuracy according to } \text{IEC } 60770 - \text{ limit point adjustment (non-linearity, hysteresis, repeatability)} \\ \overset{4}{} except nominal pressure ranges \le 0.40 \text{ bar; for these calculation of accuracy is as follows:} \\ \le \pm (0.1 + 0.02 \times \text{turn-down}) \text{ $ k$FO e.g. turn-down of } 1:3: \le \pm (0.1 + 0.02 \times 3) \text{ $ k$FO i.e. accuracy is } \le \pm 0.16 \text{ $ k$FSO} \\ \overset{5}{} \text{ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \textbf{Thermal effects (Offset and Span) / Permissible temperatures} \\ \hline \text{Tolerance band} \qquad [\% \text{ FSO}] \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC (⁴ except nominal pressure ra $\leq \pm (0.1 + 0.02 \times turn-down, 5^{5}$ software, interface, and cal	60770 – lim anges ≤ 0.4) % FSO e.ş ble have to : and Spa	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times tur)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FS re: R _{max} = [(V _S .05 % FSO / 1 n-down) % FS msec n of following damping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + i)$ parately (softwar) ble temperat	lowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriate	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ $ k$FO} \\ - \text{ turn down of span: max. 1:10} \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t ⁴ except nominal pressure ra $\leq \pm (0.1 + 0.02 \times turn-down, 5^{\circ}$ software, interface, and cait Thermal effects (Offset Tolerance band	60770 – lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0, $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times tur)$ in compensation	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down wm = nomina urn-down of 7 115 x 10) % FS re: R _{max} = [(V _S .05 % FSO / 1 n-down) % FSO msec n of following damping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwant) ble temperation rn-down) ated range	lowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriate	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ $ k$FO} \\ - \text{ turn down of span: max. 1:10} \\ \hline \\ accuracy according to IEC 60770 - Iimit point adjustment (non-linearity, hysteresis, repeatability) \\ \hline \\ except nominal pressure ranges \leq 0.40 bar; for these calculation of accuracy is as follows:\leq \pm (0.1 + 0.02 \times \text{turn-down}) \text{ $ FSO e.g. turn-down of } 1:3: \leq \pm (0.1 + 0.02 \times 3) \text{ $ FSO i.e. accuracy is } \leq \pm 0.16 \text{ $ FSO $ 50$} \\ \hline \\ \text{$ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2) \\ \hline \\ \text{Thermal effects (Offset and Span) / Permissible temperatures} \\ \hline \\ \text{Tolerance band} \qquad \begin{bmatrix} \% \text{ FSO} \\ \leq \pm (0.2 \times \text{turn-down}) \\ \text{ in compensated range} & -20 \dots 80 \text{ $ ^{\circ}C$} \\ \hline \\ \text{TC, average} & \begin{bmatrix} \% \text{ FSO / 10 K} \end{bmatrix} \\ \pm (0.02 \times \text{turn-down}) \\ \hline \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t ⁴ except nominal pressure ra $\leq \pm (0.1 + 0.02 \times turn-down, 5^{\circ}$ software, interface, and cait Thermal effects (Offset Tolerance band	60770 – lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0$ current 2-wirr supply: 0.0 $\leq \pm (0.1 \times turn$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn$ in compensative $\pm (0.02 \times turn)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 on use the fol 115 x turn-down of 7 115 x 10) % FS re: R _{max} = [(V _S .05 % FSO / 1 n-down) % FS msec n of following damping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + 1)$ parately (softwar ble temperat rn-down) ated range n-down)	lowing form wn] % FSO il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres. f accuracy is a 0.02 x 3) % FS are appropriation tures -20 80 °	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: ≤ ± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤ ± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤ ± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤ ± (0.2 x turn-down) in compensated range -20 80 °C ± (0.02 x turn-down) in compensated range -20 80 °C	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 $\leq \pm (0.1 + 0.02 \times turn-down, 5 = 50 \text{ fitters} (0ffset)$ Thermal effects (Offset) Tolerance band TC, average [% FS0	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times tur)$ in compensative $\pm (0.02 \times tur)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 on use the fol 115 x turn-down of 7 115 x 10) % FS re: R _{max} = [(V _S .05 % FSO / 1 n-down) % FS msec n of following damping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + 1)$ parately (softwar ble temperat rn-down) ated range n-down)	Iowing form wn] % FSO Il pressure ra 1:10 followir SO i.e. accu 3 – V _S min) / 0 V SO / year 9 parameters 100 sec 4. 1:10 9 parameters 100 sec 4. 1:10 9 couracy is a 0.02 x 3) % FS are appropria tures -20 80 °	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: ≤ ± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤ ± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤ ± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤ ± (0.2 x turn-down) in compensated range in compensated range -20 80 °C TC, average [% FSO / 10 K] ± (0.02 x turn-down) in compensated range -20 80 °C Permissible temperatures medium: -25 125 °C	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 $\leq \pm (0.1 + 0.02 \times turn-down, 5 = 5 oftware, interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0 $	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronic of = electronic of = electronic of = electronic of = electronic of = electronic of = offset: 0 = turn down of be ordered segnations = be ordered segnation = be ordered segnation	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C °C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ k}^{2} \text{ FSO} \\ - \text{ turn down of span: max. 1:10} \\ \hline \\ 3 \text{ accuracy according to } \text{IEC } 60770 - \text{ limit point adjustment (non-linearity, hysteresis, repeatability)} \\ 4 \text{ except nominal pressure ranges } \le 0.40 \text{ bar; for these calculation of accuracy is as follows:} \\ \le \pm (0.1 + 0.02 \times \text{ turn-down}) \% \text{ FSO e.g. turn-down of } 1:3: \le \pm (0.1 + 0.02 \times 3) \% \text{ FSO i.e. accuracy is } \le \pm 0.16 \% \text{ FSO} \\ \hline \\ 5 \text{ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2) \\ \hline \\ \hline \text{Thermal effects (Offset and Span) / Permissible temperatures} \\ \hline \\ \hline \text{Tolerance band} \qquad [\% \text{ FSO}] & \le \pm (0.2 \times \text{ turn-down}) \\ \text{ in compensated range} & -20 \dots 80 \ ^{\circ}\text{C} \\ \hline \\ \hline \\ \hline \text{TC, average} \qquad [\% \text{ FSO } / 10 \text{ K}] & \pm (0.02 \times \text{ turn-down}) \\ \text{ in compensated range} & -20 \dots 80 \ ^{\circ}\text{C} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Permissible temperatures} \\ \hline \\ $	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 $\leq \pm (0.1 + 0.02 \times turn-down, 5 = 50 \text{ fitters} (0ffset)$ Thermal effects (Offset) Tolerance band TC, average [% FS0	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronics (- = offset: 0 = turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn)$ in compensation $\pm (0.02 \times turn)$ = lectronics (-	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ k}^{2} \text{ FSO} \\ - \text{ turn down of span: max. } 1:10 \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t 4^{e} except nominal pressure results $\leq \pm (0.1 + 0.02 \times turn-down, 5^{\circ}$ software, interface, and cait Thermal effects (Offset Tolerance band TC, average [% FS0 Permissible temperature	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronics (- = offset: 0 = turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn)$ in compensation $\pm (0.02 \times turn)$ = lectronics (-	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ k}^{2} \text{ FSO} \\ - \text{ turn down of span: max. } 1:10 \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescent interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0 Permissible temperature Electrical protection	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 $\pm (0.1 \times turn)$ configuration - electronic $a-$ offset: 0 - turn down of be ordered seg n) / Permissil $\leq \pm (0.2 \times tur)$ in compensat $\pm (0.02 \times tur)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{ c c c c c } & - offset: 0 \dots 90 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescent interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0 Permissible temperature Electrical protection Short-circuit protection	lown 60770 - lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO] O / 10 K] :s	0 der series 723 (7 IEC 60770 ³ : : no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn$ approx. 200 n configuration - electronic 4 $\geq \pm (0.2 \times tur)$ in compensat $\pm (0.02 \times tur)$ in compensat medium: electronics / storage: permanent	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FS	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriation f accuracy is a 0.02 x 3) % FS are appropriation f accuracy is a -20 80 ° -25 125 t: -25 85 ° -40 100	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar, for these calculation of accuracy is as follows: ≤ ± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤ ± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤ ± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤ ± (0.2 x turn-down) in compensated range -20 80 °C TC, average [% FSO / 10 K] ± (0.02 x turn-down) in compensated range -20 80 °C Permissible temperatures medium: -25 125 °C electronics / environment: -25 125 °C electronics / environment: -25 85 °C storage: -40 100 °C Electrical protection permanent Reverse polarity protection no damage, but also no function	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t 4 except nominal pressure rescuracy according to IEC t 5 software, interface, and cait Thermal effects (Offset Tolerance band TC, average [% FSC Permissible temperature Electrical protection Short-circuit protection	lown 60770 - lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO] O / 10 K] :s	0 der series 723 (7 IEC 60770 ³ : : no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn$ approx. 200 n configuration - electronic 4 $\geq \pm (0.2 \times tur)$ in compensat $\pm (0.02 \times tur)$ in compensat medium: electronics / storage: permanent	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FS	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriation f accuracy is a 0.02 x 3) % FS are appropriation f accuracy is a -20 80 ° -25 125 t: -25 85 ° -40 100	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
Adjustability configuration of following parameters possible (interface / software necessary ⁵):	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects		$\begin{array}{c} 0 & \dots \\ \text{der series 723 (7)} \\ \text{IEC 60770 }^3 \vdots \\ \text{no change of for calculation} \\ \leq \pm [0.1 + 0.0] \\ \text{with turn-do e.g. with a tu} \\ \leq \pm (0.1 + 0.0] \\ \text{current 2-wirr supply: 0.1} \end{array}$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-dow wn = nomination urn-down of $\frac{7}{1015}$ $\overline{715} \times 10) \%$ FS $\overline{7e: R_{max}} = [(V_{s})$.05 % FSO / 1	lowing form wn] % FSO Il pressure r. I:10 followir SO i.e. accu 3 – V _S min) / 0 V	nula (for nomina ange / adjusted og accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt	range alculated: % FSO age 3-wire: R	R _{min} = 10 kΩ	bar see not		
	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 findconfiguration$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{105 \times 10} \%$ FSC $\overline{re: R_{max} = [(V_g Max + 100)]}$ $\overline{re: R_{max} = [(V_g Max +$	lowing form wn] % FSO Il pressure r. I:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- electronic damping: 0 100 sec	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 findconfiguration$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{105 \times 10} \%$ FSC $\overline{re: R_{max} = [(V_g Max + 100)]}$ $\overline{re: R_{max} = [(V_g Max +$	lowing form wn] % FSO Il pressure r. I:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load nfluence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 forconfiguration- electronic o$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{15 \times 10} \%$ FSC $\overline{105 \%}$ FSC / 1 n-down) $\%$ FS msec n of following damping: 0	lowing form wn] % FSO Il pressure r. I:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- offset: 0 90 % FSO	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 fconfiguration- electronic o- offset: 0$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{105 \times 10}$ % FSC $\overline{105 \%}$ FSC / 1 n-down) % FS msec n of following damping: 0 90 % FSC	lowing form wn] % FSO al pressure r. 1:10 followin 50 i.e. accu 3 – V _S min) / 0 V 50 / year g parameters . 100 sec	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- offset: 0 90 % FSO	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time		0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 fconfiguration- electronic o- offset: 0$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomination urn-down of $\frac{7}{100}$ $\overline{105 \times 10}$ % FSC $\overline{105 \%}$ FSC / 1 n-down) % FS msec n of following damping: 0 90 % FSC	lowing form wn] % FSO al pressure r. 1:10 followin 50 i.e. accu 3 – V _S min) / 0 V 50 / year g parameters . 100 sec	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- offset: 0 90 % FSO - turn down of span: max. 1:10	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability	lown	0 der series 723 (7 IEC 60770 ³ : : no change o for calculatic $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turnapprox. 200 fconfiguration- electronic o- offset: 0 turn down$. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 15 x turn-dow wn = nomina urn-down of $\frac{7}{115 \times 10}$ % FS re: R _{max} = [(V _s .05 % FSO / 1 n-down) % FS msec n of following damping: 0 90 % FSO of span: max	lowing form wn] % FSO Il pressure r. 1:10 followin 50 i.e. accu 3 – V _S min) / 0 V 50 / year g parameters . 100 sec x. 1:10	by interface ² bula (for nominal ange / adjusted bg accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa s possible (inter	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability)	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability	lown 60770 – lim	0 der series 723 (7 IEC 60770 ³ : : no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 in configuration - electronic of - offset: 0 - turn down bit point adjustri	. 10 V with co $\overline{7-pin}$ $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 2 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSO / 1 n-down) % FSO msec n of following damping: 0 90 % FSO of span: max ment (non-linear	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year g parameters 100 sec x. 1:10 arity, hysteres	the product of the second sec	range alculated: % FSO age 3-wire: R nd: 0.05 %	3 _{min} = 10 kΩ FSO / kΩ			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0 .40 bar; for these calculation of accuracy is as follows:	Performance Accuracy performance after turn-d - TD ≤ 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC of the except nominal pressure ratio	lown 60770 – linr anges ≤ 0 .4	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 n configuration - electronic of - offset: 0 - turn down <i>it point adjustr.</i> 40 <i>bar; for these</i>	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FS re: R _{max} = [(V _S 1.05 % FSO / 1 n-down) % FS msec amping: 0 90 % FSO of span: max ment (non-lineage e calculation of	Iowing form wn] % FSO Il pressure ra I:10 followin SO i.e. accu 3 – V _S min) / 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a	an interface ² ange / adjusted ange / adjusted accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter <i>is, repeatability)</i> <i>s follows:</i>	range alculated: % FSO age 3-wire: R id: 0.05 %	R _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 $\%$ FSO - turn down of span: max. 1:10 accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: $\le \pm (0.1 + 0.02 \times turn-down) \%$ FSO e.g. turn-down of 1:3: $\le \pm (0.1 + 0.02 \times 3) \%$ FSO i.e. accuracy is $\le \pm 0.16 \%$ FSO	Performance Accuracy berformance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load nfluence effects Long term stability Response time Adjustability accuracy according to IEC of except nominal pressure re $\leq \pm (0.1 + 0.02 \times turn-down)$	lown 60770 - lim anges ≤ 0) % FSO e.e	0 der series 723 (7 IEC 60770 ³ : : no change or for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0]$ current 2-wir supply: 0. $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic of - offset: 0 - turn down int point adjustra 40 bar; for these g. turn-down of	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-dow wn = nomina urn-down of 75 115 x 10) % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x	Iowing form wn] % FSO Il pressure ra 1:10 followir SO i.e. accu $_{5} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteress f accuracy is a .02 x 3) % FS	buila (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ $0.02 \text{ A}] \Omega$ volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 $\%$ FSO - turn down of span: max. 1:10 accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: $\le \pm (0.1 + 0.02 \times turn-down) \%$ FSO e.g. turn-down of 1:3: $\le \pm (0.1 + 0.02 \times 3) \%$ FSO i.e. accuracy is $\le \pm 0.16 \%$ FSO	Performance Accuracy berformance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load nfluence effects Long term stability Response time Adjustability accuracy according to IEC of except nominal pressure re $\leq \pm (0.1 + 0.02 \times turn-down)$	lown 60770 - lim anges ≤ 0) % FSO e.e	0 der series 723 (7 IEC 60770 ³ : : no change or for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0]$ current 2-wir supply: 0. $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic of - offset: 0 - turn down int point adjustra 40 bar; for these g. turn-down of	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-dow wn = nomina urn-down of 75 115 x 10) % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x	Iowing form wn] % FSO Il pressure ra 1:10 followir SO i.e. accu $_{5} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteress f accuracy is a .02 x 3) % FS	buila (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ $0.02 \text{ A}] \Omega$ volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 $\%$ FSO - turn down of span: max. 1:10 accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: $\le \pm (0.1 + 0.02 \times \text{turn-down}) \%$ FSO e.g. turn-down of 1:3: $\le \pm (0.1 + 0.02 \times 3) \%$ FSO i.e. accuracy is $\le \pm 0.16 \%$ FSO software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and $\%$	Performance Accuracy berformance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load nfluence effects Long term stability Response time Adjustability accuracy according to IEC of except nominal pressure ra $\leq \pm (0.1 + 0.02 \times turn-down, software, interface, and cal$	lown 60770 – lim anges ≤ 0) % FSO e., ble have to	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic of - offset: 0 - turn down <i>it point adjustr.</i> 10 <i>bar; for these</i> <i>g. turn-down of</i> <i>be ordered sep</i>	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ f ac	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres. f accuracy is a 0.02 x 3) % FS are appropria	buila (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ $0.02 \text{ A}] \Omega$ volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 accuracy according to IEC 60770 – limit point adjustment (non-linearity, hysteresis, repeatability) - except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: $\leq \pm (0.1 + 0.02 \times turn-down)$ % FSO e.g. turn-down of 1:3: $\leq \pm (0.1 + 0.02 \times 3)$ % FSO i.e. accuracy is $\leq \pm 0.16$ % FSO - software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures	Performance Accuracy berformance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load nfluence effects Long term stability Response time Adjustability accuracy according to IEC of except nominal pressure ra $\leq \pm (0.1 + 0.02 \times turn-down, software, interface, and call Thermal effects (Offset$	60770 – lim anges ≤ 0.4) % FSO e.ş ble have to : and Spa	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times 100)$ $\leq \pm (0.1 \times 100)$ configuration - electronic of offset: 0 - turn down of be ordered seg n) / Permissil	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 2 115 x 10) % FS 115 x 10) % FS 115 x 10) % FS 105 % FSO / 1 n-down) % FSO amping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres. f accuracy is a 0.02 x 3) % FS are appropria	buila (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ $0.02 \text{ A}] \Omega$ volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \ \text{ FSO} \\ - \text{ turn down of span: max. 1:10} \\ \hline \\ accuracy according to IEC 60770 - Iimit point adjustment (non-linearity, hysteresis, repeatability) \\ \hline \\ except nominal pressure ranges \le 0.40 \text{ bar; for these calculation of accuracy is as follows:} \\ \le \pm (0.1 + 0.02 \text{ x turn-down}) \ & \text{FSO e.g. turn-down of } 1:3: \le \pm (0.1 + 0.02 \text{ x } 3) \ & \text{FSO i.e. accuracy is } \le \pm 0.16 \ & \text{FSO} \\ \hline \\ \hline \\ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and \Rightarrow \\ \hline \\ $	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability accuracy according to IEC of texcept nominal pressure ra $\leq \pm (0.1 + 0.02 \times turn-down, to the comparison of the comp$	60770 – lim anges ≤ 0.4) % FSO e.ş ble have to : and Spa	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times tur)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FS re: R _{max} = [(V _S .05 % FSO / 1 n-down) % FS msec n of following damping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar) ble temperat	lowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriate	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Performance Accuracy berformance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load nfluence effects Long term stability Response time Adjustability accuracy according to IEC t except nominal pressure ra $\leq \pm (0.1 + 0.02 \times turn-down, \frac{1}{2}$ software, interface, and cait Thermal effects (Offset Tolerance band	60770 – lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times tur)$ in compensation	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down wm = nomina urn-down of 7 115 x 10) % FS re: R _{max} = [(V _S .05 % FSO / 1 n-down) % FSO msec n of following damping: 0 90 % FSO of span: max ment (non-linea e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwant) ble temperation rn-down) ated range	lowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriate	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \widetilde{\text{FSO}} \\ - \text{ turn down of span: max. 1:10} \\ \hline \\ 3 \text{ accuracy according to } \text{IEC } 60770 - \text{ limit point adjustment (non-linearity, hysteresis, repeatability)} \\ \hline 4 \text{ except nominal pressure ranges } \le 0.40 \text{ bar; for these calculation of accuracy is as follows:} \\ \le \pm (0.1 + 0.02 \text{ x turn-down}) \% \text{ FSO e.g. turn-down of } 1:3: \le \pm (0.1 + 0.02 \text{ x } 3) \% \text{ FSO i.e. accuracy is } \le \pm 0.16 \% \text{ FSO} \\ \hline 5 \text{ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2) \\ \hline \textbf{Thermal effects (Offset and Span) / Permissible temperatures} \\ \hline \text{Tolerance band} \qquad \left[\% \text{ FSO}\right] \\ \hline \le \pm (0.2 \text{ x turn-down}) \\ \text{ in compensated range} -20 \dots 80 ^{\circ}\text{C} \\ \hline \text{TC, average} \qquad \left[\% \text{ FSO / 10 K}\right] \pm (0.02 \text{ x turn-down}) \\ \hline \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability accuracy according to IEC of except nominal pressure re $\leq \pm (0.1 + 0.02 \times turn-down, 5^{\circ}$ software, interface, and cait Thermal effects (Offset Tolerance band	60770 – lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0$ current 2-wirr supply: 0.0 $\leq \pm (0.1 \times turn$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn$ in compensative $\pm (0.02 \times turn)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 f	lowing form wn] % FSO il pressure ra 1:10 followin SO i.e. accu $_{3} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres. f accuracy is a 0.02 x 3) % FS are appropriation tures -20 80 °	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is ≤ ± 0.25 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ \widehat{PSO}}\\ - \text{ turn down of span: max. 1:10} \\ \hline \\ accuracy according to IEC 60770 - Iimit point adjustment (non-linearity, hysteresis, repeatability) \\ \hline \\ except nominal pressure ranges \le 0.40 bar; for these calculation of accuracy is as follows: \\ \le \pm (0.1 + 0.02 \text{ x turn-down}) \text{ \widehat{PSO} e.g. turn-down of 1:3: $\le \pm (0.1 + 0.02 \times 3) $\text{ \widehat{PSO} i.e. accuracy is $\le \pm 0.16 $\text{ \widehat{PSO}}$} \\ \hline \\ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 \\ \hline \\ \text{ $\widehat{Software, interface, and cable have to be o$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ^a accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 $\leq \pm (0.1 + 0.02 \times turn-down, 5^{\circ}$ software, interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn)$ in compensative $\pm (0.02 \times turn)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 f	Iowing form wn] % FSO Il pressure ra 1:10 followir SO i.e. accu 3 – V _S min) / 0 V SO / year 9 parameters 100 sec 4. 1:10 9 parameters 100 sec 4. 1:10 9 couracy is a 0.02 x 3) % FS are appropria tures -20 80 °	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: ≤ ± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤ ± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤ ± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤ ± (0.2 x turn-down) in compensated range -20 80 °C ± (0.02 x turn-down) in compensated range -20 80 °C	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 $\leq \pm (0.1 + 0.02 \times turn-down, 5 = 50 \text{ fitters} (0ffset)$ Thermal effects (Offset) Tolerance band TC, average [% FS0	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn$ approx. 200 for configuration - electronic 4 - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn)$ in compensative $\pm (0.02 \times turn)$. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 f	Iowing form wn] % FSO Il pressure ra 1:10 followir SO i.e. accu 3 – V _S min) / 0 V SO / year 9 parameters 100 sec 4. 1:10 9 parameters 100 sec 4. 1:10 9 couracy is a 0.02 x 3) % FS are appropria tures -20 80 °	an interface ² aula (for nomina ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa s possible (inter is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: ≤ ± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤ ± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤ ± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows [®] 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤ ± (0.2 x turn-down) in compensated range in compensated range -20 80 °C TC, average [% FSO / 10 K] ± (0.02 x turn-down) in compensated range -20 80 °C Permissible temperatures medium: -25 125 °C	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 $\leq \pm (0.1 + 0.02 \times turn-down, 5 = 5 oftware, interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0 $	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronic of = electronic of = electronic of = electronic of = electronic of = electronic of = offset: 0 = turn down of be ordered segnations = be ordered segnation = be ordered segnation	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125	an interface ² aula (for nomination of the second seco	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: ≤ ± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤ ± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤ ± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤ ± (0.2 x turn-down) in compensated range in compensated range -20 80 °C TC, average [% FSO / 10 K] ± (0.02 x turn-down) in compensated range -20 80 °C Permissible temperatures medium: -25 125 °C	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 5 software, interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronic of = electronic of = electronic of = electronic of = electronic of = electronic of = offset: 0 = turn down of be ordered segnations = be ordered segnation = be ordered segnation	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125	an interface ² aula (for nomination of the second seco	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: ≤ ± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤ ± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤ ± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤ ± (0.2 x turn-down) in compensated range in compensated range -20 80 °C TC, average [% FSO / 10 K] ± (0.02 x turn-down) in compensated range in compensated range -20 80 °C Permissible temperatures medium: nedium: -25 125 °C electronics / environment: -25 85 °C	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 5 software, interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.1 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronic of = electronic of = electronic of = electronic of = electronic of = electronic of = offset: 0 = turn down of be ordered segnations = be ordered segnation = be ordered segnation	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ k}^{\circ} \text{FSO} \\ - \text{ turn down of span: max. } 1:10 \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 $\leq \pm (0.1 + 0.02 \times turn-down, 5 = 50 \text{ fitters} + 10 $	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronics (- = offset: 0 = turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn)$ in compensation $\pm (0.02 \times turn)$ = lectronics (-	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ k}^{2} \text{ FSO} \\ - \text{ turn down of span: max. } 1:10 \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t 4^{e} except nominal pressure results $\leq \pm (0.1 + 0.02 \times turn-down, 5^{\circ}$ software, interface, and cait Thermal effects (Offset Tolerance band TC, average [% FS0 Permissible temperature	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronics (- = offset: 0 = turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn)$ in compensation $\pm (0.02 \times turn)$ = lectronics (-	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ 's FSO} \\ - \text{ turn down of span: max. 1:10} \\ \hline \\ ^3 \text{ accuracy according to } \text{IEC } 60770 - \text{limit point adjustment (non-linearity, hysteresis, repeatability)} \\ ^4 \text{ except nominal pressure ranges } \le 0.40 \text{ bar; for these calculation of accuracy is as follows:} \\ \le \pm (0.1 + 0.02 \times \text{turn-down}) \text{ 's FSO e.g. turn-down of } 1:3: \le \pm (0.1 + 0.02 \times 3) \text{ 's FSO i.e. accuracy is } \le \pm 0.16 \text{ 's FSO} \\ \hline \\ ^5 \text{ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2) \\ \hline \\ \hline \\ \textbf{Thermal effects (Offset and Span) / Permissible temperatures} \\ \hline \\ \textbf{Tolerance band} \qquad [\% \text{ FSO}] & \le \pm (0.2 \times \text{turn-down}) \\ \text{ in compensated range} & -20 \dots 80 \text{ °C} \\ \hline \\ \textbf{TC, average} \qquad [\% \text{ FSO } / 10 \text{ K}] & \pm (0.02 \times \text{turn-down}) \\ \text{ in compensated range} & -20 \dots 80 \text{ °C} \\ \hline \\ \textbf{Permissible temperatures} \\ \hline \\ \textbf{medium:} & -25 \dots 125 \text{ °C} \\ \text{ electronics } / \text{ environment: } -25 \dots 85 \text{ °C} \\ \text{ storage: } & -40 \dots 100 \text{ °C} \\ \hline \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t 4 except nominal pressure rescuracy according to IEC t $\leq \pm (0.1 + 0.02 \times turn-down, 5^{\circ}$ software, interface, and cait Thermal effects (Offset Tolerance band TC, average [% FS0 Permissible temperature	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tun- $\leq \pm (0.1 + 0.0)$ current 2-wirr supply: 0.0 $\leq \pm (0.1 \times turn)$ approx. 200 of configuration = electronics (- = offset: 0 = turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn)$ in compensation $\pm (0.02 \times turn)$ in compensation $\pm (0.02 \times turn)$ in compensation = electronics (-	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{c} - \text{ offset: } 0 \dots 90 \text{ k}^{2} \text{ FSO} \\ - \text{ turn down of span: max. } 1:10 \\ \end{array}$	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescent interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0 Permissible temperature Electrical protection	60770 - lim anges ≤ 0.4) % FSO e.5 ble have to : and Spa [% FSO] O / 10 K]	0 der series 723 (7 IEC 60770 ³ : \pm no change of for calculation $\leq \pm [0.1 + 0.0]$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0]$ current 2-wirr supply: 0. $\leq \pm (0.1 \times turn)$ approx. 200 to configuration - electronic a - offset: 0 - turn down of be ordered seg m) / Permissil $\leq \pm (0.2 \times tur)$ in compensa $\pm (0.02 \times tur)$ in compensa $\pm $. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FSC 115 x 10) % FSC 105 % FSO / 1 n-down) % FSO of span: max ment (non-lineae e calculation of f 1:3: $\leq \pm (0.1 + 4)$ parately (softwar ble temperate rn-down) ated range	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s}$ min) / 0 V SO / year 2 parameters 100 sec (1:10 arity, hysteres accuracy is a 0.02 x 3) % FS are appropriat tures -20 80 ° -25 125 (: -25 85 °	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
- offset: 0 90 % FSO - turn down of span: max. 1:10 ³ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability) ⁴ except nominal pressure ranges ≤ 0.40 bar; for these calculation of accuracy is as follows: ≤± (0.1 + 0.02 x turn-down) % FSO e.g. turn-down of 1:3: ≤± (0.1 + 0.02 x 3) % FSO i.e. accuracy is ≤± 0.16 % FSO ⁵ software, interface, and cable have to be ordered separately (software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or higher, and 2 Thermal effects (Offset and Span) / Permissible temperatures Tolerance band [% FSO] ≤± (0.2 x turn-down) in compensated range -20 80 °C TC, average [% FSO / 10 K] ± (0.02 x turn-down) in compensated range in compensated range -20 80 °C Permissible temperatures medium: medium: -25 125 °C electronics / environment: -25 85 °C storage: -40 100 °C Electrical protection permanent	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC 0 4 except nominal pressure rescuracy according to IEC 0 5 software, interface, and call Thermal effects (Offset Tolerance band TC, average [% FS0 Permissible temperature Electrical protection Short-circuit protection	lown 60770 - lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO] O / 10 K] :s	0 der series 723 (7 IEC 60770 ³ : : no change of for calculation $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0)$ current 2-wir supply: 0.0 $\leq \pm (0.1 \times turn$ approx. 200 n configuration - electronic 4 $\geq \pm (0.2 \times tur)$ in compensat $\pm (0.02 \times tur)$ in compensat medium: electronics / storage: permanent	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy 4 on use the fol 115 x turn-down of 7 115 x 10) % FSC 115 x 10) % FS	Iowing form wn] % FSO Il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % FS are appropriation f accuracy is a 0.02 x 3) % FS are appropriation f accuracy is a -20 80 ° -25 125 t: -25 85 ° -40 100	an interface ² aula (for nominal ange / adjusted ang accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] S C C C C C	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			
$\begin{array}{ c c c c c } & - offset: 0 \dots 90 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Performance Accuracy performance after turn-d - TD \leq 1:5 - TD > 1:5 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to IEC t 4 except nominal pressure rescuracy according to IEC t 5 software, interface, and call Thermal effects (Offset Tolerance band TC, average [% FSC Permissible temperature Electrical protection Short-circuit protection Reverse polarity protecti Electromagnetic	lown 60770 - lim anges ≤ 0) % FSO e ble have to : and Spa [% FSO] O / 10 K] :s	0 der series 723 (7 IEC 60770 ³ : : no change or for calculatio $\leq \pm [0.1 + 0.0$ with turn-do e.g. with a tu $\leq \pm (0.1 + 0.0$ current 2-wir supply: 0 $\leq \pm (0.1 \times turn$ approx. 200 n configuration - electronic o - offset: 0 - turn down of be ordered sep n) / Permissil $\leq \pm (0.2 \times turn$ in compensa $\pm (0.02 \times turn$ in compensa $\pm (0.02 \times turn$ in compensa $\pm (0.02 \times turn$ in compensa medium: electronics / storage:	. 10 V with co 7-pin) $\leq \pm 0.1 \%$ FSC f accuracy ⁴ on use the fol 115 x turn-dow wn = nomina urn-down of ² 115 x 10) % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x 100 % FSC 115 x	lowing form wn] % FSO il pressure ra 1:10 followin SO i.e. accu $_{5} - V_{s} min) /$ 0 V SO / year g parameters . 100 sec c. 1:10 arity, hysteres f accuracy is a 0.02 x 3) % Fs are appropria tures -20 80 ° -25 125 t: -25 85 ° -40 100 unction	an interface ² aula (for nominal ange / adjusted ag accuracy is c racy is $\leq \pm 0.25$ 0.02 A] Ω volt loa is, repeatability) s follows: 50 i.e. accuracy is te for Windows [®] s accuracy is c c c c c c c	range alculated: % FSO age 3-wire: R id: 0.05% fface / softwa	B _{min} = 10 kΩ FSO / kΩ are necessary			

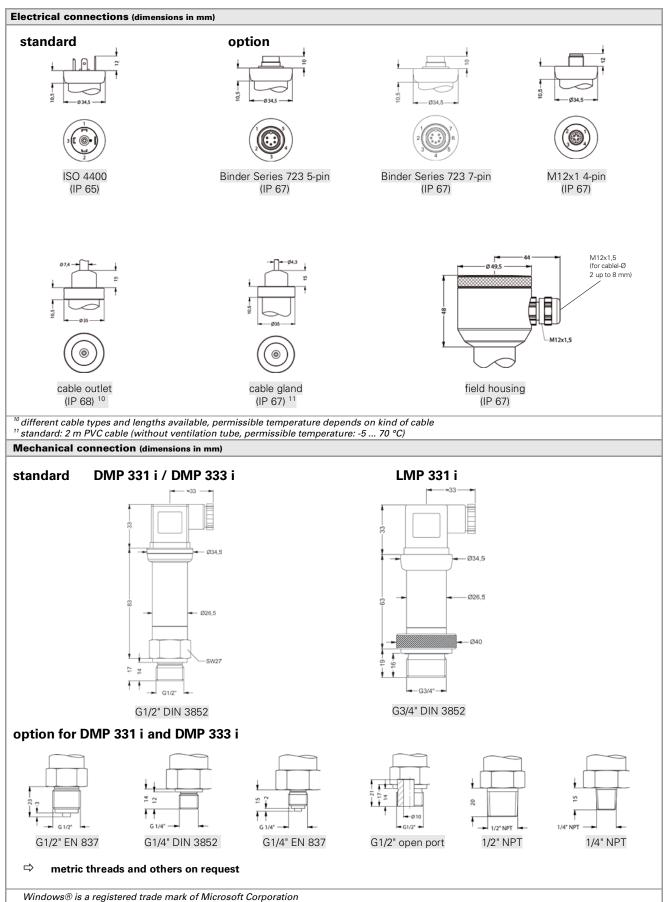

DMP 331i / DMP 333i / LMP331i


Precision Pressure Transmitter

Materials												
Pressure port	stainless steel 1.4404 (316 L)											
Housing	stainless steel 1.4404 (316 L)											
Seals (media wetted)	DMP 331i / LMP 331i: FKM DMP 333i: NBR optional: welded version ⁶ ; others on request											
Diaphragm	stainless steel 1.4435 (316L)											
Media wetted parts	pressure port, seals, diaphragm											
•	ports according to EN 837; welded version not available with pressure ranges \leq 0.16 bar and > 40 bar											
Mechanical stability												
Vibration	10 g RMS (20 2000 Hz)											
Shock	100 g / 11 msec.											
Explosion protection (only for	4 20 mA / 2-wire)											
Approval DX19-DMP 331i	IBExU 10 ATEX 1068 X zone 0: II 1 G Ex ia IIC T4 Ga zone 20: II 1 D Ex ta IIIC T 85 °C, IP6x in preparation											
Safety technical max. values	U _i = 28 V, I _i = 93 mA, P _i = 660 mW, C _i ≈ 0 nF, L _i ≈ 0 μH											
Permissible temperatures for environment	in zone 0: -20 60 °C with p _{atm} 0.8 bar up to 1.1 bar in zone 1 or higher: -25 70 °C											
Connecting cables	cable capacitance: signal line/shield also signal line/signal line: 160 pF/m											
(by factory)	cable inductance:signal line/shield also signal line/signal line: 1 µH/m											
Miscellaneous												
Current consumption	signal output current: max. 25 mA signal output voltage: max. 7 mA											
Weight	approx. 200 g											
Installation position	any ⁷											
Operational life	> 100 x 10 ⁶ pressure cycles											
CE-conformity	EMC Directive: 2004/108/EC Pressure Equipment Directive: 97/23/EC (module A) ⁸											

This directive is only valid for devices with maximum permissible overpress

Wiring diagrams



Pin configuration

Electrical connections	ISO 4400	Binder 723 (5-pin)	Binder 723 (7-pin)	M12x1/ metal (4-pin)	field housing	cable colours (DIN 47100)
Supply +	1	3	3	3	IN +	white
Supply -	2	4	1	1	IN –	brown
Signal + (only for 3-wire	3	1	6	-	OUT +	green
shield	ground pin	5	2	4	<u> </u>	yellow / green
Communication RxD	-	-	4	-	-	-
interface ⁹ TxD	-	-	5	-	-	-
GNE	- 1	-	7	-	-	-

⁹ may not be transmitted directly with the PC (the suitable adapter is available as accessory)

DMP 331i / DMP 333i / LMP 331i Precision Pressure Transmitter / Screw-in Transmitter

DMPi E 010711

Tel: +49 (0) 92 35 / 98 11- 0 Fax: +49 (0) 92 35 / 98 11- 11 www.bdsensors.com info@bdsensors.de

Fax: +49 (0) 92 35 / 98 11 -11

Ordering code DMP 331i/ DMP 333i/ LMP 331i

LMP 331i		\square	\square	-Ц		_	-L	1-L			1-L		Ц.	-Ц	-		
Pressure																	
For DMP 331i	021100	1 1	0														
а	gauge bsolute	1 1	1														
For DMP 333i														_			
а	gauge 1 bsolute	13	8 0 8 1														
For LMP 331i																	
i	in bar n mH ₂ O	4 3 4 3	8 0														
Input [mH ₂ O]	[bar]	4 3															
For DMP 331i ² or LMP 331i																	
4 10	0.40 1.0			4	0 0	0 0 0 1											
20	2.0				0												
40	4.0			4	0	0 1								_			
100 200	10 20				0 0												
400	40				0	0 2											
For DMP 333i ²											1						
	60 100			6 1	0	02 03											
	200			2	0	0 3											
	400			4	0	0 3											
For DMP 331i	600			6	0	0 3											
	.40 0.40			S	4	0 0											
	-1 1			S	1	0 2								_			
	-1 2 -1 4			V V	2	0 2 0 2											
	-1 10			V	1	0 3											
	istomer			9	9	99											consult
Output 4 20 mA	/ 2-wire	_					1										
Intrinsic safety 4 20 mA	/ 2-wire						E										
0 10 V	/ 3-wire Istomer						3										concult
Accuracy (at nominal pressure)							9	1									consult
	0.1 %							1									
cu Electrical connection	istomer							9									consult
Male and female plug IS	SO 4400	_	_	_	_	_	_	_	1	0 0)				_		
Male plug Binder series 723									2	0 0)						
Compact field ł stainless steel 1.440									8	5 ()						
Male and fema																	
Binder series 723									A	0 0				_			
Male plug M12x1 (4-pin) Cable outlet with PV									M	1 (A (
	e outlet 4								Ť	R							
	istomer									9 9							consult
Mechanical connection For DMP 331i or DMP 333i																	
G1/2" D												1 0	0 0				
G1/2" G1/4" D	EN 837											2 0 3 0	0	_			
	EN 837											4 0	0				
G1/2" DIN 38	52 with 5,6											F 0	0				
flush G1/2" DIN 3852 open press	sensor																
	/2" NPT											H 0 N 0	0				
1.	/4" NPT											N 4	0				
For LMP 331i G3/4" DIN 3852 with flush	sonsor											ĸo	0				
cu	istomer											K 0 9 9	9				consult
Seals																	
For DMP 331i or LMP 331i	FKM													1			
without (welded v														1 2			
For DMP 333i																	
	NBR													5			
cu Special version	istomer													9			consult
st	tandard														1	1 1	
RS-232 ir	nterface ⁸														1	2 1 9 9	
	istomer														~	0 0	consult

1 measurement starts with ambient pressure

² pressure ranges ≤ 40 bar as DMP 331i; pressure ranges > 40 bar as DMP 333i ³ standard: 2 m PVC cable without ventilation tube (permissible temperature: -5 ... 70 °C), optionally cable with ventilation tube

⁴ cable with ventilation tube (code TR0 = PVC cable), different cable types and lengths available, price without cable

5 Mechanical connection G1/2" DIN 3852 flush impossible for vacuum ranges

6 only possible for DMP 331i

 7 welded version only with pressure ports according to EN 837; not possible with pressure ranges $\,\leq$ 0.16 bar and > 40 bar ⁸ RS-232 interface only possible with el. connection Binder serie 723 (7pin)

Software, Interface and cable for DMP 331i, DMP 333i and LMP 331i with option RS-232 have to be order separately

(Ordering code: CIS Set 510; Software appropriate for Windows[®] 95, 98, 2000, NT Version 4.0 or newer and XP) Windows® is a registrated trademark of Microsoft Corporation

BD SENSORS GmbH BD-Sensors-Straße 1 D - 95199 Thierstein

Telefon +49 (0) 92 35 / 98 11- 0 Telefax +49 (0) 92 35 / 98 11- 11

www.bdsensors.com info@bdsensors.de

itains product specification; properties are not guaranteed. Detailed information

000 01071

This price list